
Cuake
a ∅hr test task.

v 1.0.1

Arsenijs Gluhihs
<arsenijs@doma.dev>

Jons Mostovojs
<jonn@doma.dev>

1 Introduction

Thank you for and agreeing to complete this ∅hr task! It is designed to take
around an hour to complete for a developer proficient in Unity.

You are given a project which has some functions which are yet not imple-
mented. You have to fill in implementations of these functions following the
specification given in this document.

Note that there may be bugs in the skeleton implementation. If you find an
inconsistency, consider the specification correct and the implementation faulty.

2 The gist

While making computer games, having challenging AIs that perform well is a
key to great experience. The authors of Cuake (a game where the player has
to use fuel to manage speed and direction of a pair of cubical units in order to
ram opponent’s cubes) need your help to develop the best AI possible.

At the moment of collision between two opposing units, whichever unit was
moving faster will destroy the other one, but its speed will be decreased in line
with normal collision physics.

The units are fighting under a cubical glass dome on an icy surface with barriers.
The units are perfectly controllable on the ground and in the air, if you manage
to lift them off somehow.

All the AI submissions shall enter a Swiss tournament, playing best three out
of five matches. Good luck!

1

3 Setup

You will be given a Unity project with a scene called ”MainScene”. This is the
single integration point for all the assets that makes it possible to launch server
and clients via standard ”NetworkManager” and play the game itself, via class
unsurprisingly called ”Game”.

There are four spawn points for the pairs of units of both opponents, which
are used by ”Game” via ”GameState” to populate the board when the game
starts. The units are represented by cubes, and in the following section, we
describe their mechanics.

Figure 1: The red and blue points are spawn points for the units, whereas the
yellow ones are the spawn point and the turning points of the trajectory of the
neutral cube. (0, 0, 0) is a point, marked by green, blue and red axis.

”Solution” class has a controller attached to it, using which the cubes are con-
trolled. By default, you have ”UniversalUserController” selected in ”Solution”,
which allows a human player to use keyboard to control the units. Pressing
”1” and ”2” will toggle the selection of own units and ”WASD” or arrow keys
will move the selected units around. A human player can also hold left mouse
button down and drag it in any direction, causing a larger force in that direction
be applied to each of the selected units.

4 Cube mechanics

Each player controls two units represented by cubes and spawned at the spawn
points on each side of the board (see Fig. 1). The goal of each player is to

2

collide with opponents’ units in such way that their own units travel faster than
the opponents’ units at collision time. When such collision happens and the dif-
ference in speeds is greater than some threshold, a collision event is computed,
but the slower cube is removed from the board. The threshold is configured in
”GameState” script in the ”Removal Speed Threshold” field.

Figure 2: During collision, the game will access velocity of both colliding cubes
and take its magnitude (speed). In this case, it will check that it’s greater than
1m

s and if it is, it will remove the slower cube.

5 Fuel

The players can’t just speed up indefinitely. The speed has a hard higher limit
which is normally unreachable.

It is unreachable, because the game has a finite resource: fuel. When ”Cal-
culateInput()” method is called each frame by ”Player” object, it returns a
vector v with a magnitude m. The physical meaning of m is ”how much fuel to
consume in this frame”. Server handling this will calculate an impulse j with
magnitude |j|.

Let b be ”Fuel Cost Exponent Base” and c be ”Fuel Efficiency” (see Fig. 2).
Then the formula for the magnitude of this impulse is:

|j| = c · logb(m+ 1)

Impulse j is then applied to each of the currently selected units owned by the
player issuing the input and is collinear with v.

6 Unit Selection

As mentioned in the previous section, the impulse is only applied to the units
that are selected. You can select an element from anywhere in the code of your

3

Figure 3: Impulse generated as a function of fuel spent with game parameters
from Fig. 2.

AI using methods ”SelectElement”, ”DeselectElement” and ”ToggleElement”.

Note that if you have both units selected and your ”CalculateInput()” would
produce an input, requesting to spendm fuel, exactlym fuel will be spent, rather
than 2m. And the same impulse will be relayed to both selected elements.

7 The Board

The board consists of the icy surface and bumper walls. On the board there is
a moving neutral obstacle called ”the walking cube”, which doesn’t remove the
units on collision. Also, on the board there are some units controlled by the
players.

7.1 Icy Surface

Icy surface is a 10 × 10 square on which the cubes spawn. It has a low, but
noticeable friction.

To see the physics of this material, consult ”PhysicsMaterial/Icy Floor”.

4

7.2 Bumper Walls

Bumper walls are visible from y coordinates 0; 1 and are completely transparent
between y coordinates 1; 11. The bumper ceiling is also completely transparent.

To see the physics of this material, consult ”PhysicMaterial/Bumper Wall”.

7.3 The Walking Cube

The Walking Cube spawns somewhere in the middle of the map and then starts
traversing the line of delineation. It has a significantly greater mass than normal
cubes.

This cube its material with cubes, that represent players’ units.

Your AI can get the information about the position and the velocity of this
cube by searching the synchronised singleton:

ServerObjectsManager.Singleton.ServerObjects

7.4 The Units

Each player owns two units, labeled ”1” and ”2”. They have the same physics
as ”the Walking Cube”, except they are significantly lighter.

Your AI can get the information about your units:

var myElements =

GameState.Singleton.Group(MyPlayerId).Elements

Whereas you can access the enemy units like this:

int enemy = MyPlayerId == 0 ? 1 : 0;

var enemyElements =

GameState.Singleton.Group(enemy).Elements;

8 Submission

Your submission will be competing against a bunch of naive solvers (implemen-
ted by us) and against solvers, submitted by other candidates. To qualify for a
middle-level position, you’re expected to either beat all the naive solvers or to
produce an above-average submission. To qualify for a junior position, you’re
expected to produce a working submission that scores comparable to an average
naive solver.

5

9 Swiss Tournament

The Swiss tournament system is designed to ensure fair competition by pairing
participants based on their performance in preceding rounds:

• Initial Pairing: In the first round, players are paired randomly.

• Scoring System: Points are awarded based on match outcomes as fol-
lows:

– Win: 3 points

– Draw: 1 point

– Loss: 0 points

• Subsequent Pairing: From the second round onwards, players are paired
according to their accumulated points. Those with similar points are
matched against each other. This method ensures that as the rounds
progress, players of similar strength (based on their performance in the
tournament) face each other.

• Best Three out of Five: In our setup, each match is a ”best three out of
five” format. The player to first achieve three game wins out of a possible
five is considered the match winner.

• Match Continuity: It’s crucial for to know that solvers can retain their
state between games within a match. This facilitates strategies where a
solver might adjust its tactics or compute potential outcomes based on
the results of previous games in the match.

• Tie-breakers: At times, multiple players might have the same score after
the final round. In such cases, we employ the following tie-breaks:

– Opponent Match Win Percentage (OMW%): A metric of cu-
mulative strength of your opponents.

– Game Win Percentage (GW%): A metric of how effective your
submission was at winning games, not just matches.

– Opponent Game Win Percentage (OGW%): A metric of how
cumulative effectiveness of your opponents’ submissions.

– Deterministic Coin Flip: In the extremely unlikely event that all
the tie breaks are the same (it’s almost impossible), the tie shall be
broken by a coin flip.

9.1 Qualifier Tournament

After a submission is received, it enters a qualifier Swiss Tournament, where it’s
pitted against multiple baseline AIs made by us and the weakest AIs submitted
by other candidates. These submissions can be thought of as ”naive”. This
tournament will have 7 other entrants and 3 rounds. For you to qualify for a
junior position, your submission has to score at least 6 points in the qualifier.

6

9.2 Main Tournament

If your submission has managed to pass a qualifier Swiss Tournament, it enters
the main Swiss Tournament.

• Qualification for Middle Position:

– Secure 9 points in the Qualifier.

– Or, have a positive record in the main tournament by scoring more
than half of the available points.

• Qualification for Senior Position: Achieve a minimum score of 3(R−1)
points in the main tournament, where R is the total number of rounds.

• Initial Pairing: Players are randomly paired up for the first round.

9.3 Victory Conditions, Matches & Games

The AIs are ran once per match of the tournament inside a disposable VM. It
means that your submission can preserve the information about the games it
played against a given opponent, but will be reset at the beginning of the next
round.

Individual games are ran as follows:

• Preparation Time: AIs are allocated approximately, but not less than,
100 milliseconds of wall time for game preparations.

• Game Duration: AIs have approximately, but not less than, 9 seconds
to secure a victory.

• Victory Conditions:

– If an AI successfully removes all of the opponent’s cubes within the
stipulated time, it is declared the winner immediately.

– If neither AI achieves this on time, the player with the higher number
of cubes remaining is the winner.

– In the event that both players have an equal count of cubes, the win-
ner is determined by the amount of fuel reserve. The player with the
greater reserve is declared the victor.

The AI connects to the server using the functionality defined in ”Lobby” via
”NetworkManager”.

7

