
Hanooy Maps
a ∅hr test task.

v 0.5.1

Ilona Prikule
<ilona@doma.dev>

Jons Mostovojs
<jonn@doma.dev>

May 2023

1 Introduction
Thank you for agreeing to complete this ∅hr task! It is designed to take around
an hour to complete for a proficient developer. Unless otherwise specified, we
suggest spending ≈ 15 minutes to read this document and come up with the so-
lution idea, ≈ 30 minutes to implement the solution, and ≈ 15 minutes to test it.

You are given a project which has some functions which are yet not imple-
mented. You have to fill in implementations of these functions following the
specification given in this document.

Note that there may be bugs in the skeleton implementation. If you find an
inconsistency, consider the specification correct and the implementation faulty.

2 The gist
Hanooy Inc. is making colourful tower theme parks! Each theme park is given
a limited rectangular space. Your task is to plan a top-down map of the theme
park, given a set of towers and the colourings of their layers.

The more towers you connect together in clusters, the more awe-inspiring your
theme park will be and the more tourists will visit it!

The bases of towers are all of the same size, even though they may have different
amounts of levels, each of which is painted in some colour. Consequetive layers
are always coloured differently, but the same tower may have two layers that
share a colour.

We hope that you’ll find the most awe-inspiring tower placement. Good luck!

1



3 Neighbours
Towers K and L are neighbours if and only if there is at least one pixel p ∈ K and
q ∈ L such that p and q share one of the coordinates and the other coordinate of
these pixels differs exactly by 1. In other words: at least one pixel in K shares
an edge with at least one pixel in L.

Figure 1: Pixel marked ”A” has shares an edge with pixel marked ”B”, thus
these two towers are neighbours.

3.1 Valid Placement of Neighbouring Towers
3.1.1 Primality of Towers

If towers K and L are neighbours, and the topmost leftmost pixel of K lies to
the left of the topmost leftmost pixel of L, then K is primary and L is secondary,
unless the topmost leftmost pixel of L lies to the top of the topmost leftmost
pixel of K. In that case, L is the primary and K is the secondary. In other
words, primality goes from top to bottom and from left to right.

3.1.2 Validity of Placement

If a primary tower A with layers Al
1...n is a neighbour of a secondary tower B

with layers Bl
1...m, then there exists a non-empty sequence of layers α = l1, · · · , li

such that both the outermost layers of A (Al
1, · · · , Al

i) and the innermost layers
of B (Bl

m−l+1, · · ·Bl
m) are both precisely α.

Towers can’t overlap.

Figure 2: Left placement of two 4x4 towers is valid, whereas the right one isn’t.

2



4 Inputs
An input contains a list square 24-bit bitmaps representing available towers and
two integers cx, cy, representing the canvas size into which you must fit some or
all of towers.

Example input.json:

{
"ziggurats": ["./mono.bmp", "./di.bmp"],
"c_x": 8,
"c_y": 4

}

(a)
mono.bmp

(b)
di.bmp

Figure 3: Files in the same directory with input.json

5 Outputs
Outputs is a list of bitmap indexes together with x, y coordinates of each bitmap.
If you couldn’t fit a bitmap into the canvas, don’t include it into this set.

As in other computer applications, (0, 0) is topmost leftmost pixel! Thus, when
we say that point a = (xa, ya) lies to the top of point b = (xb, yb), we mean that
ya < yb. When we say that it lies to the left of point b, we mean that xa < xb.

3



Example output, which your submission should print into STDOUT:

[
{"id": 0, "x": 0, "y": 0},
{"id": 1, "x": 4, "y": 0},

]

6 Scoring
It is said that if a tower is a neighbour of another tower, then they belong to
the same cluster.

Each tower X contributes the Kg points to the total score, where K is the
size of of the cluster it belongs to, and g is the amount of neighbours of X.

Figure 4: 4 towers form a cluster, 1 of those has 3 neighbours, 2 of those have 2
neighbours and 1 of those has 1 neighbour. Thus, the total score for this cluster
is 100 = 43 + 2× 42 + 4.

7 Submissions
Your submission will be competing against a bunch of naive solvers (imple-
mented by us) and against solvers, submitted by other candidates. To qualify
for a middle-level position, you’re expected to beat all the naive solvers. To
qualify for a junior position, you’re expected to produce a working submission
that scores comparable to an average naive solver.

7.1 Running the solvers
The solvers are ran once on each of the different test configurations inside
Docker. Each invocation shall be given approximately, but not less than, 1
second of wall time to print out solution into the STDOUT. Along with your
submission running, exactly one of the CPU cores shall be allocated to running
a naive solver. Aside from that, you can expect an overall idle server with at
least three cores available for your solver.

4


