
On the map
a doma.dev test task.

v 1.1.1

Pola
<pola@doma.dev>

Jonn
<jonn@doma.dev>

October 2022

1 Introduction
Thank you for your interest in working at doma.dev and agreeing to complete
this task! It is designed to take around an hour to complete.

You are given a project which has some functions which are yet not imple-
mented. You have to fill in implementations of these functions following the
specification given in this document.

Note that there may be bugs in the skeleton implementation. If you find an
inconsistency, consider the specification correct and the implementation faulty.

2 The gist
Marketing department of the startup you work at wants to put your product
on the map. They tasked you with making a bot which makes bids on adver-
tisement space on a high-traffic website called zerohr.io. This website runs
an ad auction, which implements AdNonsense protocol. Your goal is to place
bids over the course of a month1 and beat your competitors around the world
in the amount of click-through events your bot has generated for your startup’s
website. Good luck!

1Of course, we won’t run your submission for a month, but rather we’ll simulate the passage
of time.

1



3 Treasury, click-through, and sales
3.1 Treasury
The marketing budget your bot will use to make bids is 100,000 credits. Ad-
Nonsense provider won’t let you spend more than that amount.

3.2 Click-through
Curious users visit your startup’s website both naturally and thanks to the ads
you place. Only the latter are considered to be click-through events.

3.3 Campaign sales
Just as organic traffic, click-through events may result in sales or in returning
users, who will eventually make a purchase. Both sales due to click-through and
sales of returning users, who discovered your startup by clicking on an ad you
placed are considered ”campaign sales”.

4 AdNonsense protocol
AdNonsense works over HTTP and returns JSON. There is no API rate limit-
ing in AdNonsense, however, since AdNonsense servers are operating under a
constant load, availability may suffer from short outages2, especially if the load
spikes.

Each output sends along an X-Nonsense-Auth-Chal header. It is an ASCII
string that you have to sign with the secret key you used to register. This sig-
nature has to be then inserted into X-Nonsense-Auth-Sig encoded as url-safe
base64 string.

2These outages are also simulated. Hopefully. ;)

2



4.1 POST /register
• Input:

– pk: the public key that you’ll use for authentication.
– url: the URL of your startup’s website3.

• Output:

– status:
∗ HTTP 200: the registration was successful |
∗ HTTP 403: the public key is already registered

4.2 GET /items
• Output: [

– id: the id of the ad display slot.
– t0: time when the ad will start showing.
– t1: time when the ad will stop showing.
– topBid: current top bid value.

]

4.3 GET /item/:id
• Output:

– id: the id of the ad display slot.
– t0: time when the ad will start showing.
– t1: time when the ad will stop showing.
– bids: [

∗ value: bid value.
∗ bidder: public key of the party that made the bid.

]
3Use config/config.exs to set this value, as it’s going to be patched by the submission

runner. See section 5.2.

3



4.4 POST /bid/:id
• Input:

– id: the id of the ad display slot you’re bidding on.
– value: the value of the bid you’re placing.

• Output:

– topBid: current top bid value for this slot.
– bidder: public key of the party that made the bid.

4



5 Submissions
As mentioned in ”the gist” section, the run of your submission will be ran in a
sped-up simulated time. Your submission will be competing against a bunch of
naive strategies (implemented by us) and against strategies, submitted by other
candidates. To qualify for a middle-level position, you’re expected to beat all
the naive strategies. To qualify for a junior position, you’re expected to produce
a working submission that scores comparable to an average naive strategy.

5.1 Running the bots
The bots are ran on the same machine over several rounds. During each round,
each competitor is assigned one of several possible latencies. Every submission
will have a fair chance to run at each relative latency. The latency is simulated
using the same facilities as the time, but isn’t sped up proportionally. Thus,
the latency values are close to the real world ones.

5.2 Technology of the bot runner
The bots are ran in docker compose, attached to a single docker network. The
API server is registered in this network under name zerohr_io. Thus, you can
make requests to http://zerohr_io and docker will correctly resolve those.
The names of the containers that you submit will be replaced with a random,
deterministic and unique names in the following files:

• *.yaml

• config/config.exs

5


